Aux variables
There are a large number of variables that can be output to the aux file by putting the appropriate string in the mhd.in file. Here follows a list and explanation of each.
Enable these outputs by setting one of the following options in the aux parameter in the mhd.in
file:
MHD module
Aux name |
From Bifrost to CGS |
CGS Units |
From Bifrost to SI |
SI Units |
Aux description |
'ca' |
u_u |
cm.s^-1 |
u_u * 1.e-2 |
m/s |
Fast mode speed |
'uv' |
u_u |
cm.s^-1 |
u_u * 1.e-2 |
m/s |
The viscouse velocity : sqrt(c_s^2 + v_A^2) |
'uv1' |
u_u |
cm.s^-1 |
u_u * 1.e-2 |
m/s |
uv along the x direction |
'uv2' |
u_u |
cm.s^-1 |
u_u * 1.e-2 |
m/s |
uv along the y direction |
'uv3' |
u_u |
cm.s^-1 |
u_u * 1.e-2 |
m/s |
uv along the z direction |
'ux' |
u_u |
cm.s^-1 |
u_u * 1.e-2 |
m/s |
The fluid velocity along the x direction |
'uy' |
u_u |
cm.s^-1 |
u_u * 1.e-2 |
m/s |
The fluid velocity along the y direction |
'uz' |
u_u |
cm.s^-1 |
u_u * 1.e-2 |
m/s |
The fluid velocity along the z direction |
'um' |
u_u/u_l |
s^-1 |
u_u/u_l |
s^-1 |
Divergence of the perpendiculare velocity field, a type of magnetic diffusivity velocity |
'um1' |
u_u/u_l |
s^-1 |
u_u/u_l |
s^-1 |
um along the x direction |
'um2' |
u_u/u_l |
s^-1 |
u_u/u_l |
s^-1 |
um along the y direction |
'um3' |
u_u/u_l |
s^-1 |
u_u/u_l |
s^-1 |
um along the z direction |
'Ix' |
u_i ^* |
statA/cm^2 = G/s |
u_i * 1.e-2 * 4pi / c_cgs / mu0_SI |
A/m^2 |
Electric current density, x direction |
'Iy' |
u_i ^* |
statA/cm^2 = G/s |
u_i * 1.e-2 * 4pi / c_cgs / mu0_SI |
A/m^2 |
Electric current density, y direction |
'Iz' |
u_i ^* |
statA/cm^2 = G/s |
u_i * 1.e-2 * 4pi / c_cgs / mu0_SI |
A/m^2 |
Electric current density, z direction |
'Ex' |
u_el ^* |
statV/cm = G |
u_el * 1.e-6 * c_cgs |
V/m |
Electric field along the x direction |
'Ey' |
u_el ^* |
statV/cm = G |
u_el * 1.e-6 * c_cgs |
V/m |
Electric field along the y direction |
'Ez' |
u_el ^* |
statV/cm = G |
u_el * 1.e-6 * c_cgs |
V/m |
Electric field along the z direction |
'etax' |
u_el ^* |
statV/cm = G |
u_el * 1.e-6 * c_cgs |
V/m^2 |
Non-ideal resistive part of the electric field along the x direction |
'etay' |
u_el ^* |
statV/cm = G |
u_el * 1.e-6 * c_cgs |
V/m^2 |
Non-ideal resistive part of the electric field along the y direction |
'etaz' |
u_el ^* |
statV/cm = G |
u_el * 1.e-6 * c_cgs |
V/m^2 |
Non-ideal resistive part of the electric field along the z direction |
'xdnr' |
u_r |
g/cm^3 |
u_r * 1.e3 |
kg/m^3 |
Mass density moved 0.5 grid steps in x direction, to cell interface |
'ydnr' |
u_r |
g/cm^3 |
u_r * 1.e3 |
kg/m^3 |
Mass density moved 0.5 grid steps in y direction, to cell interface |
'zdnr' |
u_r |
g/cm^3 |
u_r * 1.e3 |
kg/m^3 |
Mass density moved 0.5 grid steps in z direction, to cell interface |
'fudge' |
|
|
|
|
A checking factor for the alfven velocity |
^* where c_{CGS}=2.998\times 10^{10}, mu0_{SI}=4\pi\times 10^{-7}, u_i = c_cgs * u_b / u_l / 4pi
and u_el = u_b * u_l / u_t / c_cgs
. Please refer to unit factors derivation for computation of u_b
, u_i
and u_el
Heating terms of the internal energy equation
Aux name |
From Bifrost to CGS |
CGS Units |
From Bifrost to SI |
SI Units |
Aux description |
'qrdiff' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Density diffusion |
'qediff' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Energy diffusion |
'qeadv' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Energy advection |
'qpdv' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Energy due to compression (change in energy due to compresion or expansion) |
'qvisc' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Viscous heating |
'qjoule' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Joule heating |
'qeadv' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
heating advection |
'qtot' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Radiative heating (flux divergence) (LTE, see below) |
'qgenrad' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Radiative heating (flux divergence) from opt. thin losses + recipes (see below) |
'qspitz' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Heating via Spitzer conduction (para. to mag. field) |
Possible additional terms, see the Generalized Ohm's law section below.
Terms of the momentum equation
Aux name |
From Bifrost to CGS |
CGS Units |
From Bifrost to SI |
SI Units |
Aux description |
'fpadv1' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Reynolds stress term along x in the equation of motion ddx(rho.ux.ux)+ddy(rho.ux.uy)+ddz(rho.ux.uz) (careful! only diagonal term in old Bifrost) |
'fpadv2' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Reynolds stress term along y in the equation of motion ddx(rho.uy.ux)+ddy(rho.uy.uy)+ddz(rho.uy.uz) (careful! only diagonal term in old Bifrost) |
'fpadv3' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Reynolds stress term along z in the equation of motion ddx(rho.uz.ux)+ddy(rho.uz.uy)+ddz(rho.uz.uz) (careful! only diagonal term in old Bifrost) |
'fpdiff1' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Diagonal term of the viscous stress along x ddx(Dxx) |
'fpdiff2' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Diagonal term of the viscous stress along y ddx(Dyy) |
'fpdiff3' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Diagonal term of the viscous stress along z ddx(Dzz) |
'fstress1' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Non-diagonal term of the viscous stress along x ddy(Dxy) + ddz(Dxz) |
'fstress2' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Non-diagonal term of the viscous stress along y ddx(Dyx) + ddz(Dyz) |
'fstress3' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Non-diagonal term of the viscous stress along z ddx(Dzx) + ddy(Dzy) |
'fpress1' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Force term due to the pressure gradient along x |
'fpress2' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Force term due to the pressure gradient along y |
'fpress3' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Force term due to the pressure gradient along z |
'florentz1' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Lorentz force term along x |
'florentz2' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Lorentz force term along y |
'florentz3' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Lorentz force term along z |
'frdiff1' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Force term due to mass diffusion along x |
'frdiff2' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Force term due to mass diffusion along y |
'frdiff3' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Force term due to mass diffusion along z |
'fpdiff1' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Force term due to momentum diffusion along x |
'fpdiff2' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Force term due to momentum diffusion along y |
'fpdiff3' |
u_e/u_l |
dyn/cm^3 |
u_e/u_l * 10 |
N |
Force term due to momentum diffusion along z |
'term1' |
|
|
|
|
cross term 1 in the equation of motion |
'term2' |
|
|
|
|
cross term 2 in the equation of motion |
'term3' |
|
|
|
|
cross term 3 in the equation of motion |
'term4' |
|
|
|
|
cross term 4 in the equation of motion |
'term5' |
|
|
|
|
cross term 5 in the equation of motion |
'term6' |
|
|
|
|
cross term 6 in the equation of motion |
Equation of state
Aux name |
From Bifrost to CGS |
CGS Units |
From Bifrost to SI |
SI Units |
Aux description |
'tg' |
already in cgs |
K |
already in SI |
K |
Temperature |
'p' |
u_p |
dyne/cm^2 |
u_p * 1.e-1 |
Pa |
Pressure |
'cs' |
u_u |
cm/s |
u_u * 1.e-2 |
m/s |
Sound speed (from perfect gas law) |
'cstab' |
u_u |
cm/s |
u_u * 1.e-2 |
m/s |
Sound speed (from tabulated EoS) |
'nel' |
already in cgs |
cm^-3 |
1.e6 |
m^-3 |
Electron density |
Radiation
Aux name |
From Bifrost to CGS |
CGS Units |
From Bifrost to SI |
SI Units |
Aux description |
'jn' |
u_e/u_t*u_l |
erg/cm^2/s |
u_e / u_t * u_l *1.e-3 |
W/m^2 |
Mean radiation field in bin n |
'sn' |
|
|
|
|
Source function in bin n |
'qn' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Flux divergence in bin n |
'qtot' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
LTE Radiative heating (Total Flux divergence) |
'Fx' |
u_e/u_t*u_l |
erg/cm^2/s |
u_e / u_t * u_l *1.e-3 |
W/m^2 |
LTE Radiative Flux along x |
'Fy' |
u_e/u_t*u_l |
erg/cm^2/s |
u_e / u_t * u_l *1.e-3 |
W/m^2 |
LTE Radiative Flux along y |
'Fz' |
u_e/u_t*u_l |
erg/cm^2/s |
u_e / u_t * u_l *1.e-3 |
W/m^2 |
LTE Radiative Flux along z |
'tn' |
|
|
|
|
Tau along vertical inward ray in bin n |
'in' |
|
|
|
|
Specific intensities for all outgoing rays in bin n |
'on' |
|
|
|
|
Opacity in bin n |
'en' |
|
|
|
|
Photon destruction probability in bin n |
'bn' |
|
|
|
|
Thermal emission in bin n |
Genrad
Aux name |
From Bifrost to CGS |
CGS Units |
From Bifrost to SI |
SI Units |
Aux description |
'qgenrad' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Total radiative heating from genrad |
'qthin' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Thin radiative losses (always negative) |
'qcwrm' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
An artificial heating term, to prevent the temperature to be below a certain value |
'qcheat' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Ad hoc (cheating) term to ratiative heating |
'qdeltat' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Radiative heating/cooling due to difference in local temperature to effective temperature (5780 K) |
'qh' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Radiative heating/cooling from hydrogen bb transitions and Lyman continuum |
'qca' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Radiative heating/cooling from calcium bb transitions |
'qmg' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Radiative heating/cooling from magnesium bb transitions |
'qhmbf' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Radiative heating/cooling from negative hydrogen ion, bound-free transitions |
'qbalmer' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Radiative heating/cooling from hydrogen balmer continuum |
'qincrad' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Heating from incoming radiation from the corona |
Generalized Ohm's law
See Martinez-Sykora et al. 2012 for more details.
Aux name |
From Bifrost to CGS |
CGS Units |
From Bifrost to SI |
SI Units |
Aux description |
'hall_x' |
u_el |
statV/cm = G |
u_el * 1.e-6 * c_cgs |
V/m^2 |
Non-ideal hall part of the electric field along the x direction |
'hall_y' |
u_el |
statV/cm = G |
u_el * 1.e-6 * c_cgs |
V/m^2 |
Non-ideal hall part of the electric field along the y direction |
'hall_z' |
u_el |
statV/cm = G |
u_el * 1.e-6 * c_cgs |
V/m^2 |
Non-ideal hall part of the electric field along the z direction |
'amb_x' |
u_el |
statV/cm = G |
u_el * 1.e-6 * c_cgs |
V/m^2 |
Non-ideal ambipolar part of the electric field along the x direction |
'amb_y' |
u_el |
statV/cm = G |
u_el * 1.e-6 * c_cgs |
V/m^2 |
Non-ideal ambipolar part of the electric field along the y direction |
'amb_z' |
u_el |
statV/cm = G |
u_el * 1.e-6 * c_cgs |
V/m^2 |
Non-ideal ambipolar part of the electric field along the z direction |
'uhall_x' |
u_u |
cm.s^-1 |
u_u * 1.e-2 |
m.s^-1 |
Hall velocity along the x direction |
'uhall_y' |
u_u |
cm.s^-1 |
u_u * 1.e-2 |
m.s^-1 |
Hall velocity along the y direction |
'uhall_z' |
u_u |
cm.s^-1 |
u_u * 1.e-2 |
m.s^-1 |
Hall velocity along the z direction |
'uamb_x' |
u_u |
cm.s^-1 |
u_u * 1.e-2 |
m.s^-1 |
Ambipolar velocity along the x direction |
'uamb_y' |
u_u |
cm.s^-1 |
u_u * 1.e-2 |
m.s^-1 |
Ambipolar velocity along the y direction |
'uamb_z' |
u_u |
cm.s^-1 |
u_u * 1.e-2 |
m.s^-1 |
Ambipolar velocity along the z direction |
'eta_hall' |
u_l^2/u_t |
cm^2.s^-1 |
u_l^2/u_t * 1.e-4 |
m.s^-1 |
Hall term diffusion |
'eta_hallb' |
u_l^2/u_t/u_b |
cm^2.s^-1.G^-1 |
u_l^2/u_t/u_b |
m.s^-1 |
reduced Hall term diffusion |
'eta_amb' |
u_l^2/u_t |
cm^2.s^-1 |
u_l^2/u_t * 1.e-4 |
m.s^-1 |
Ambipolar term diffusion |
'eta_ambb' |
u_l^2/u_t/u_b^2 |
cm^2.s^-1.G^-2 |
u_l^2/u_t/u_b * 1.e4 |
m.s^-1 |
reduced Ambipolar term diffusion |
'qjamb' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Heating via ambipolar diffusion |
'qh' |
u_e/u_t |
erg/cm^3/s |
u_e / u_t *1.e-1 |
W/m^3 |
Heating via hall effect |